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Abstract. We present a detailed study of quantum simulations of coupled spin
systems in surface-electrode (SE) ion-trap arrays, and illustrate our findings
with a proposed implementation of the hexagonal Kitaev model (Kitaev A 2006
Ann. Phys. 321 2). The effective (pseudo)spin interactions making up such
quantum simulators are found to be proportional to the dipole–dipole interaction
between the trapped ions, and are mediated by motion that can be driven by
state-dependent forces. The precise forms of the trapping potentials and the
interactions are derived in the presence of an SE and a cover electrode. These
results are the starting point to derive an optimized SE geometry for trapping
ions in the desired honeycomb lattice of Kitaev’s model, where we design the
dipole–dipole interactions in a way that allows for coupling all three bond types
of the model simultaneously, without the need for time discretization. Finally, we
propose a simple wire structure that can be incorporated into a microfabricated
chip to generate localized state-dependent forces which drive the couplings
prescribed by this particular model; such a wire structure should be adaptable
to many other situations.
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1. Introduction

Ion-trap systems have proven to perform well for implementing the basic elements of traditional
quantum computing, where evolution is described in terms of discrete gate operations,
which can be implemented step by step as intermediate states are irrelevant. This is in
contrast to quantum simulations, where the goal is to simulate the continuous evolution of
a given Hamiltonian. While the initial proposal for quantum computing with trapped ions
relied on a number of sequential steps to mediate effective qubit interactions [1], other
approaches [2–10] achieve interaction between the internal states of the ions via constant
Hamiltonians and therefore allow the development of quantum simulators based on trapped
ions [7, 8, 11–15]. In such simulators, interactions between trapped ions are dominated by the
Coulomb potential. For this interaction to affect internal states (i.e. the qubits or pseudo-spins
representing the effective quantum system to be simulated), state-dependent forces must be
applied to some or all of the trapped ions. State-dependent forces can be achieved through
optical ac-Stark shifts [5, 7, 15–19], through static magnetic-field gradients in combination
with homogeneous radio-frequency (rf) fields [4, 10, 14, 20] or with rf field gradients [21,
22]. While in most cases the Coulomb interaction is considered between ions in a self-
assembled single chain or crystal, coupling of independently trapped ions has recently been
demonstrated [23, 24].

For quantum simulations with ions in microtraps, we must take into account how the
presence of the electrodes modifies the Coulomb interaction. While in many systems this
effect is negligible (for example, in the surface electrode (SE) setup of [23], the Coulomb
coupling was found to be enhanced by only 1.8%, in agreement with our more general results

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)
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Figure 1. Coulomb interaction between two charges Q and Q ′ (full red circles)
in the presence of a grounded plane. The image charges (empty red circles)
are located below the grounded plane and carry opposite charge. Interactions
between the charges (full blue arrow) contribute to (1) in full, whereas
interactions between charges and image charges (dashed blue arrows) contribute
with a prefactor of 1/2 [26].

in section 2.3), the general theory developed here for a lattice of SE microtraps shows that
significant modifications to free-space couplings are possible. Far from being an inconvenience,
these modified interactions can be used to design quantum simulations with specific short-range
effective pseudo-spin interactions, which we illustrate with the hexagonal Kitaev model as a
concrete example.

The remainder of this paper is organized as follows. In section 2 we present a Green’s
function approach to solving electrostatic problems as they occur for SE ion traps in the presence
of a cover electrode. In section 3, we derive general expressions for spin–spin couplings in two-
dimensional (2D) microtrap arrays, applicable, for example, to electric coupling to light fields
or magnetic coupling to microwave near-field gradients. In section 4, we combine all these
methods to show how the hexagonal Kitaev model [25] can be implemented with an array
of trapped ions on an optimized SE chip, including a dedicated wire structure that could be
integrated in the chip to simultaneously mediate the couplings along three distinct bonds by the
use of magnetic-field gradients. Finally, the appendix gives a summary of the used coordinate
systems.

2. Electrostatics in the presence of conducting planes

The electrostatic interaction between charged particles close to conducting surfaces can be
strongly modified by the presence of the conductors [27]. In the idealized geometry of a
perfectly conducting grounded electrode plane at z = 0, the total electrostatic energy of a set
of charges Qi located at positions r i in the half-space zi > 0 (see figure 1) is [26]

EC
∞

=
1

4πε0

−

∑
i

Q2
i

4zi
+

∑
i< j

Qi Q j G∞(r i , r j)

 . (1)

The Coulomb interaction term in (1) is expressed in terms of the Dirichlet Green’s function
G∞, which can be found from the free-space Green’s function G(0)(r, r ′)= 1/‖r − r ′

‖ by the

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)
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Figure 2. (a) Sketch of an SE trap with a grounded cover plane positioned at a
height H above the electrode plane. The red ring electrodes are at rf potential,
while all grey areas are grounded. For static interactions or interactions varying
slowly compared to the rf period, only the time-averaged potential contributes, so
for our purposes the situation is equivalent to two completely grounded planes.
(b) The interaction energy (3) between two point charges at same height h over
the electrode plane, as a function of the charge separation ρ, in the presence of
a cover plane at height H = 100 h. The red and blue parts of the solid curves
are computed by (4a) and (4b), respectively, while the dashed lines illustrate the
approximate behavior given by (5).

method of images (see figure 1),

G∞(r, r ′)=
1√

ρ2 + (z − z′)2
−

1√
ρ2 + (z + z′)2

, (2)

where ρ =
√
(x − x ′)2 + (y − y′)2 is the horizontal distance between the charges.

In the following, we review the effects of a grounded cover plane, i.e. a second, parallel
conducting plane covering the electrode plane at height z = H (see figure 2(a)). In the initial
proposal [28] and demonstration [29] of SE rf traps, the conducting surface nearest to the
trap electrodes was theoretically at infinity but in practice a part of the surrounding apparatus.
It has been suggested that adding a cover plane in the form of a dc-biased mesh above the
electrodes could improve trap depth [30]. In addition to possible benefits of providing bias
field and shielding, the cover plane could have more practical advantages, namely shielding the
trapping region from fields due to quasi-static charges on insulators in the vacuum chamber and
establishing a more well-defined boundary condition. Further, if the cover plane is modified
to carry rf and dc electrodes of arbitrary shape in the same way as the electrode plane, the
presented formulae can be used directly to calculate the combined electric fields generated in
this ‘sandwich trap’ geometry (however, if optical access to such a trap geometry is achieved
with holes and/or fiber optics in the electrode planes [31], the present full-plane treatment must
be adapted [32]).

Below, we first modify the Green’s function (2) to include the cover plane and illustrate
that a cover plane at height H leads to exponential shielding on a lateral length scale of H
(section 2.1), then consider its effects on the electric potential generated by SEs (section 2.2)
and on effective dipole–dipole interactions between vibrating trapped ions (section 2.3).

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)



5

2.1. The shielding effect of the cover plane

When a grounded conducting cover plane at height z = H is added to the setup of figure 1, the
Coulomb interaction (1) of charges located between these two planes is modified to

EC =
1

4πε0

−

∑
i

Q2
i eH (zi)+

∑
i< j

Qi Q j G H (r i , r j)

 . (3)

Both the scaled self-potential eH (z) and the Dirichlet Green’s function G H corresponding to the
cover plane geometry with infinite conducting electrode planes at z = 0 and z = H can be found
by summing over an infinite sequence of mirror planes; and in the absence of a cover plane
(H → ∞) they reduce to (1) and (2). The scaled self-potential is eH (z)= −[2γ +ψ(z/H)+
ψ(1 − z/H)]/(4H)=

1
4z +O(z2/H 3) in terms of Euler’s constant γ = 0.577 216 . . . and the

digamma function ψ(a)= 0′(a)/0(a). The Dirichlet Green’s function is

G H (r, r ′)=

∞∑
µ=−∞

G∞(r + 2µH ẑ, r ′) (4a)

=

∞∑
ν=1

4

H
sin

(νπ z

H

)
sin

(
νπ z′

H

)
K0

(νπρ
H

)
, (4b)

where K0 is the modified Bessel function of the second kind. The second form (4b) is obtained
by solving the Laplace equation in cylindrical coordinates [27]. Both forms converge for all
parameters (ρ, z, z′), but while (4a) converges faster when ‖r − r ′

‖. H , (4b) is more suitable
if ‖r − r ′

‖& H , in particular for ρ � H , as discussed below.
The Coulomb interaction energy G H (ρ, z, z′)Q Q ′/(4πε0) between two charged particles

in an SE trap depends on the horizontal separation ρ, as illustrated in figure 2(b). To illustrate
this interaction energy we take the particles to be at the same height h above the electrode plane,
and the cover plane height H to be much larger than h. When ρ � H , we expect the cover
plane to be irrelevant, so that the interaction is described by a single image charge: it falls off
as ρ−1 when ρ < h (where the electrode plane is irrelevant) and as ρ−3 thereafter, as described
by (2). When ρ & H the cover plane becomes important and the asymptotically dominant form
is the first term of the resummation (4b), so that the presence of the cover plane leads to an
exponential shielding at the length scale of the cover plane height, as illustrated in figure 2.
Summarizing,

G H (ρ, h, h)≈


1/ρ, for ρ � h,

2h2/ρ3, for h � ρ � H,√
8

Hρ sin2
(
πh
H

)
e−πρ/H , for ρ � H.

(5)

2.2. The potential due to the surface electrodes (SEs)

The contribution to the total potential from the structured electrodes in the z = 0 plane can be
computed as an integral over the electrode plane:

8(r)=

∫
z′=0

G(S)
H (r, r ′)8(r ′)dx ′dy′, (6)

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)
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where we have introduced a ‘surface Green’s function’ G(S)
H (r, r ′)≡

1
4π

∂

∂z′ G H (r, r ′)
∣∣

z′=0
. In the

absence of a cover plane, the surface Green’s function was found to be [32]

G(S)
∞
(r, r ′)= G(S)

∞
(ρ, z)=

z

2π
(
ρ2 + z2

)3/2 , (7)

with the geometric interpretation that the potential at r due to an electrode at potential 80

is 80/2π times the solid angle spanned by the electrode as seen from r [33]. Alternatively,
the electric field at r is proportional to the magnetic field that would be observed if a current
were flowing along the edge of the electrode [33, 34]. For electrode configurations that are
translationally invariant in the x-direction, the system can be described by conformally mapping
the upper-half yz-plane (z > 0) to a disc [35]. Analogous to (4a) and (4b), we have for the
general case including a cover plane,

G(S)
H (ρ, z)=

∞∑
µ=−∞

G(S)
∞
(ρ, z + 2µH) (8a)

=
1

H 2

∞∑
ν=1

ν sin
(νπ z

H

)
K0

(νπρ
H

)
(8b)

= G(S)
∞
(ρ, z)−

1

4πH 2

∞∑
j=1,3,...

( j + 1)ζ( j + 2)
( s

2H

) j
Pj

( z

s

)
, (8c)

where ζ is the Riemann zeta function, Pj are Legendre polynomials and s = ‖r − r ′
‖ =√

ρ2 + z2. Forms (8a) and (8b) converge for all (ρ, z), but while (8a) converges faster when
s . H , (8b) is more suitable if s & H . Form (8c) is restricted to s < 2H and is most useful for
s � H . Similar to (5) we find the approximate behavior

G(S)
H (ρ, z)≈


ψ ′( z

2H )−ψ
′(1−

z
2H )

8πH2 , for ρ � z,
1√

2ρH3
sin

(
π z
H

)
e−πρ/H , for ρ � H,

(9)

where ψ ′(a)= 0′′(a)/0(a)−ψ2(a) is the first derivative of the digamma function. We
conclude that the influence of any SE is exponentially damped at distances larger than H , which
is advantageous for the experimental construction of quasi-infinite surface microtrap lattices in
that it reduces the influence of the inevitable electrode boundary: at any point further than H
away from the edge of the electrode and cover plane, the trap will look as if the electrode were
infinitely large.

Since the surface Green’s function only depends on the x- and y-coordinates through
r − r ′, (6) is a folding integral (convolution) [32] and can be rewritten as a product of the
Fourier-transformed quantities, 8̃(kx , ky, z)= G̃(S)

H (kx , ky, z)8̃(kx , ky, 0), with

8̃(kx , ky, z)=
1

2π

∫
∞

−∞

8(x, y, z)e−i(kx x+ky y)dx dy (10)

and a similar expression for the Fourier-transformed Green’s function. The latter is cylindrically

symmetric (k =

√
k2

x + k2
y),

G̃(S)
H (k, z)=

sinh(k H − kz)

sinh(k H)
→ e−kz for H → ∞, (11)

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)
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and allows a rather intuitive interpretation. All solutions of the Laplace equation with
the horizontal wavevector {kx , ky} are of the form ei(kx x+ky y)(α+e+kz +α−e−kz); the Green’s
function (11) gives the unique solution which has unit amplitude on the electrode plane
[G̃(S)

H (k, 0)= 1] and zero amplitude on the cover plane [G̃(S)
H (k, H)= 0]. Therefore, (11) gives

the unique extension of a unit-amplitude potential plane wave from the z = 0 plane into the
z > 0 half-space which satisfies the boundary condition of vanishing amplitude on the cover
plane. The fact that the momentum-space representation of the surface Green’s function (11)
can be written without infinite sums greatly simplifies the description of infinite lattices of SE
microtraps [36].

2.3. Dipole–dipole interactions between trapped ions

Trapped-ion quantum simulators couple internal degrees of freedom of the ions (typically
hyperfine states or metastable D-states) through a state-dependent coupling to shared vibrational
degrees of freedom [1, 6, 8, 14, 20, 21] (see section 3). A crucial ingredient of these couplings
is the precise nature of the Coulomb interactions between the ions. Here we address the details
of this latter point, since it will determine how to construct a quantum simulator of a desired
system, as exemplified in section 4.

We consider the regime of ‘stiff’ ion trapping [6], where the Coulomb interaction is
relatively small compared to the trapping potential, and we can interpret the normal-mode
dynamics of the ion crystal as that of a set of local harmonic oscillators that are weakly coupled.
The ion trapping potential defines a set of local eigenmodes for the i th ion corresponding
to vibration in three orthogonal directions mµ

i (with ‖mµ

i ‖ = 1 for µ= 1, 2, 3) around an
equilibrium position R0i . In what follows, we use these directions to parameterize the position
of the i th ion as

r i = R0i +
3∑

µ=1

rµi mµ

i . (12)

The total Coulomb energy of a set of N charges is given in (3), and the leading-order term
that couples the motion of the ions is

E coupling
C =

1

4πε0

N∑
i< j

3∑
µ,ν=1

Qi Q jr
µ

i r νj mµ

i · ∇i∇ j G H (R0i , R0 j) · mν
j . (13)

Since we are mainly interested in near(est)-neighbor interactions, we evaluate this expression in
terms of the infinite sum over image charge pairs (4a), rather than the resummed form (4b):

m · ∇∇
′G H (r, r ′) · m′

=

∞∑
µ=−∞

m · ∇∇
′G∞(r + 2µH ẑ, r ′) · m′, (14)

where the explicit dipole–dipole coupling is given by the expression without a cover plane,

m · ∇∇
′G∞(r, r ′) · m′

=
m · m′

− 3(m · n)(m′
· n)

‖r − r ′
‖3

−
m · m̄′

− 3(m · n̄)(m̄′
· n̄)

‖r − r̄ ′
‖3

(15)

in terms of n = (r − r ′)/‖r − r ′
‖, n̄ = (r − r̄ ′)/‖r − r̄ ′

‖, and the mirrored quantities r̄ ′
=

r ′
− 2(r ′

· ẑ) ẑ and m̄′
= m′

− 2(m′
· ẑ) ẑ. The first term of (15) is the well-known dipole–dipole

interaction, while the second term is the correction due to image charges in the electrode.

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)
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In order to illustrate the behavior of the dipolar interaction (15) in the close proximity of
a conducting electrode plane, we again consider two ions located at equal height h above the
electrode plane, spaced by a distance ρ along the x-axis and in the absence of a cover plane.
If we assume that both ions vibrate along axes m = m′ that are parallel to the laboratory-frame
coordinate axes, then we find that the presence of the electrode plane can either increase or
decrease the dipolar coupling strength:

m = m′
= x̂ : x̂ · ∇∇

′G∞(h ẑ, h ẑ + ρ x̂) · x̂ = −
2

ρ3

[
1 +

ρ3(2h2
− ρ2)

(ρ2 + 4h2)5/2

]
ρ�2h
−→ −

24h2

ρ5
,

m = m′
= ŷ : ŷ · ∇∇

′G∞(h ẑ, h ẑ + ρ x̂) · ŷ = +
1

ρ3

[
1 −

ρ3

(ρ2 + 4h2)3/2

]
ρ�2h
−→ +

6h2

ρ5
, (16)

m = m′
= ẑ : ẑ · ∇∇

′G∞(h ẑ, h ẑ + ρ x̂) · ẑ = +
1

ρ3

[
1 −

ρ3(8h2
− ρ2)

(ρ2 + 4h2)5/2

]
ρ�2h
−→ +

2

ρ3
.

Thus we see that by choosing the directions of vibration m in particular ways, we can use the
presence of the electrode plane to make the dipolar interactions fall off with the fifth power of
distance instead of with the third power (which is the case in the absence of any conducting
planes), as long as the ion oscillation frequency is low enough to avoid the effects of retardation
and dissipation. The relevant length scale that determines whether or not the electrode plane
has a strong influence on the dipole–dipole coupling is ρ ∼ 2h, similar to figure 2; for even
farther separations (ρ > H ), we find exponentially damped dipole–dipole couplings due to
the shielding effect of the cover plane (see section 2.1). These rapid dampings can be used
to construct lattice simulation models with nearly local interactions, which is a desirable feature
since many spin models from condensed-matter physics are formulated in terms of such local
(e.g. nearest-neighbor) couplings.

3. Spin–spin interactions between trapped ions

This section derives how state-dependent forces can induce pseudo-spin interactions between
neighboring ions through the Coulomb potential. While this effect is well known in principle [1],
we show how these effective interactions are constructed in a lattice of ions without the
need for time-slicing (‘Trotterization’ [37]). Further we show that, to lowest order, the
effective interaction strengths are proportional to the real-space Coulomb coupling strengths,
an observation that greatly simplifies the design of lattice-based quantum simulators (see
section 4).

3.1. Normal modes of vibration

For small oscillation amplitudes rµi the coupled harmonic motion of N ions in a lattice can be
described by considering the local trapping potential curvatures (the second derivatives of the
ion trapping pseudo-potential with respect to position) around the equilibrium positions R0i and
including the Coulomb couplings between ions in separate wells to second order [38]. If we
assume that all excursions r i − R0i are already written in terms of the ‘bare’ eigenmodes of
the isolated local trapping potentials (with ‘bare’ frequencies ω̄iµ), as in (12), then the potential

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)
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energy of the ions of mass M is

V =
1

2
M

 N∑
i=1

3∑
µ=1

ω̄2
iµ(r

µ

i )
2 +

N∑
i, j=1

3∑
µ,ν=1

γ
µν

i j rµi r νj

 , (17)

where γ µνi i = 0 and γ µνi 6= j =
Qi Q j

4πε0 M mµ

i · ∇i∇ j G H (R0i , R0 j) · mν
j ; see (13). This quadratic potential

energy can be diagonalized using coefficients Oiµm such that the real-space displacements can
be written as

rµi =

3N∑
m=1

Oiµmqm, with
3N∑

m=1

Oiµm O jνm = δi jδµν and
N∑

i=1

3∑
µ=1

Oiµm Oiµm′ = δmm′, (18)

and V =
∑3N

m=1
1
2 Mω2

mq2
m in terms of the lattice normal-mode amplitudes qm and their

frequencies ωm . We quantize these normal modes through qm 7→ q̂m = q0m(âm + â†
m) with q0 m =

√
h̄/(2Mωm) and the usual commutation relations [âm, â†

m′] = δmm′ . We will work in the ‘stiff’
lattice limit, where we assume that the ‘bare’ trap frequencies ω̄iµ ≡ ω̄µ ∀i are equal for all
ions5 and the Coulomb couplings between ions do not significantly mix local modes with
different values of µ. This is the case when (i) the bare trap frequencies are sufficiently far
apart: |γ

µν

i j | � |ω̄2
µ − ω̄2

ν| ∀ i, j, µ 6= ν, and (ii) the vibrational bands are sufficiently narrow:
|γ

µµ

i j | � minν |ω̄2
µ − ω̄2

ν| ∀ i, j, µ. In this limit, the normal modes of the lattice separate into
three disjoint sets indexed by µ ∈ {1, 2, 3}, each containing N normal modes with frequencies
close to the corresponding ω̄µ.

3.2. State-dependent forces

In addition to the Coulomb couplings, which are always on and define the coupled vibrational
eigenmodes of the trapped ions, we can experimentally introduce fields that couple to internal
states of the ions. Examples of such interactions are electric or magnetic dipole couplings,
Raman couplings or electric quadrupole couplings to laser or microwave fields. In the following
general treatment, we assume that there is a coupling between (a) classical external field(s)
effectively oscillating with angular frequency ωI, and two internal states of each ion, forming
an effective two-level (spin-1/2 or pseudo-spin-1/2) system. Irrespective of the type of induced
coupling, the coupling operator of the ith ion in its (pseudo)spin-1/2 subspace can be expressed
as a linear combination of the identity operator σ̂ (i)0 and the Pauli matrices σ̂ (i)` , ` ∈ {X, Y, Z},
expressed in a quantization coordinate frame whose axes are given by the orthonormal vectors
X̂ , Ŷ , Ẑ (see the appendix). The coupling Hamiltonian can thus be very generally expressed as

HI ≈

N∑
i=1

∑
`∈{0,X,Y,Z}

[c(i)` cos(ωIt +φ(i)c )+ (r i − R0i) · s(i)` cos(ωIt +φ(i)s )]σ̂
(i)
` , (19)

where we have performed a first-order expansion in the ion positions assuming small oscillation
amplitudes. Any type of spin-1/2 coupling that is used with trapped ions (including effective
couplings to pseudo-spin degrees of freedom) can be brought into this form, where terms

5 This equality can be relaxed to the condition that for the modes that are used for inducing spin–spin couplings,
the spread of the bare frequencies is much smaller than the dominant Coulomb couplings.
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with non-vanishing prefactors c(i)` and s(i)` are referred to as ‘carrier’ and ‘sideband’ terms,
respectively. The phases can absorb differences in the details of driving fields: while stationary
fields in general have φ(i)c = φ(i)s , travelling waves (e.g. light fields) are characterized by
φ(i)c = φ(i)s ±

π

2 .
As an example, the coupling of physical spins to a magnetic field is found by expanding

their magnetic dipole operators as µ̂
(i)

= g(i)µB(σ̂
(i)
X X̂ + σ̂ (i)Y Ŷ + σ̂ (i)Z Ẑ) in terms of the Bohr

magneton µB and the g-factors g(i); for small ion excursions the coupling Hamiltonian to the
magnetic field HI = −

∑
i µ̂

(i)
· B(r i) cos(ωIt +φ) can thus be expressed in the form of (19)

with

c(i)` =

{
0, for `= 0,
−g(i)µB X̂ · B(R0i), for `= X, and similarly for `= Y, Z ,

s(i)` =

{
0, for `= 0,
−g(i)µB∇[X̂ · B(R0i)], for `= X, and similarly for `= Y, Z

(20)

and φ(i)c = φ(i)s = φ ∀ i . We stress, however, that the above form of the magnetic dipole operator
does not apply to pseudo-spins for their effective interactions with external fields; see section 4.4
for an example involving pseudo-spins.

3.3. Effective spin–spin interactions

Inserting the lattice normal-mode expansion (18) and (12) into (19), we can write the interaction
Hamiltonian as

HI =

N∑
i=1

∑
`∈{0,X,Y,Z}

[
c(i)` cos(ωIt +φ(i)c )+

3N∑
m=1

2h̄�im`(âm + â†
m) cos(ωIt +φ(i)s )

]
σ̂
(i)
` , (21)

where we have dropped the approximation symbol and introduced �im` =
q0m

2h̄

∑3
µ=1 Oiµm mµ

i ·

s(i)` . It is common to transform into the interaction picture to assess the dynamics induced
by such an interaction Hamiltonian. In this transformation, the field-free Hamiltonian
H0 =

∑3N
m=1 h̄ωm(â†

m âm + 1
2)+ h̄ω↑↓

∑N
i=1 σ̂

(i)
Z leads to a time dependence of the operators

in (21):

âm 7→ âme−iωm t , â†
m 7→ â†

meiωm t , σ̂
(i)
0 7→ σ̂

(i)
0 , σ̂

(i)
Z 7→ σ̂

(i)
Z ,

σ̂
(i)
X 7→ σ̂

(i)
X cos(ω↑↓t)− σ̂ (i)Y sin(ω↑↓t), σ̂

(i)
Y 7→ σ̂

(i)
X sin(ω↑↓t)+ σ̂ (i)Y cos(ω↑↓t). (22)

The terms involving σ̂ (i)X and σ̂ (i)Y can lead either to spin flips without affecting the motion
(‘carrier’ transitions, mediated by c(i)X σ̂

(i)
X and c(i)Y σ̂

(i)
Y and resonant at the frequency difference

ω↑↓ between the pseudo-spin states) or to interactions that couple spins and motion (‘sideband’
transitions or Mølmer–Sørensen interactions [3], mediated by s(i)X σ̂

(i)
X and s(i)Y σ̂

(i)
Y and resonant

around ω↑↓ ± ω̄µ); the latter will dominate if they are not driven too strongly and |ωI −

ω↑↓ ± ω̄µ| � |ωI −ω↑↓| for one of the signs in ±. Here, we concentrate instead on a drive
with frequency |ωI − ω̄3| � ω̄3 � ω↑↓, close to one of the three bare eigenfrequencies of the
uncoupled ion sites (we have chosen µ= 3 without restricting generality). In this case, we can
neglect the terms in s(i)X and s(i)Y as they are far off-resonant, and all c(i)` by careful design of the
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11

experiment (see section 4.4). The interaction Hamiltonian in the interaction picture thus reduces
to a coherent drive

Hint
I ≈ h̄

N∑
i=1

3N∑
m=1

(âme−i(δm t−φ(i)s ) + â†
mei(δm t−φ(i)s ))(�im0σ̂

(i)
0 +�im Z σ̂

(i)
Z ) (23)

after a second rotating-wave approximation, with the detunings δm ≡ ωm −ωI. Equation (23)
can be exactly integrated via a Magnus expansion [39, 40] to yield the unitary evolution operator

Û int
I (t)= exp

[ N∑
i=1

3N∑
m=1

1 − eiδm t

δm
e−iφ(i)s â†

m(�im0σ̂
(i)
0 +�im Z σ̂

(i)
Z )− h.c.

]
exp

[
i

N∑
i, j=1

cosφi j
s

×

3N∑
m=1

(�im0σ̂
(i)
0 +�im Z σ̂

(i)
Z )(� jm0σ̂

( j)
0 +� jm Z σ̂

( j)
Z )

δmt − sin(δmt)

δ2
m

]
,

(24)

with φi j
s = φ(i)s −φ( j)

s . The first exponent describes a set of time-dependent coherent
displacements to all normal modes that can entangle the motion with the internal pseudo-
spin states. The second exponent constitutes a phase that depends on pairs of spins and can be
interpreted as a spin–spin interaction. For a faithful simulation of interacting spins it is desirable
that (A) the first term should be as close as possible to the identity operator, in order to avoid
populating vibrational excitations, and (B) the second term should provide sizable phases for
desired inter-ion couplings with i 6= j , as these represent the spin–spin interactions. It can be
shown from the expression above or by the use of a canonical transformation [6] that (A) can
be approximately met as long as |�im`| � |δm| for all (i,m, `).

The above restrictions do not limit the time scale for simulations, as long as one assumes
that sufficiently strong couplings can be induced by lasers or microwave field gradients.
However, the energy scale of nearest-neighbor Coulomb interactions also plays an important
role in determining simulation time scales, but this dependence is hidden in the normal-mode
coefficients Oiµm of (18). To illustrate this point, we assume that�im0 = 0 for all normal modes
m and sites i (see (20) for an example), but what we show below also holds for more general
cases. Assuming negligible displacements (see point (A) above) the unitary evolution operator
thus simplifies to

ÛI(t)= exp

i
N∑

i, j=1

σ̂
(i)
Z σ̂

( j)
Z cosφi j

s

3N∑
m=1

�im Z� jm Z ×
δmt − sin(δmt)

δ2
m



≈ exp

it
N∑

i, j=1

σ̂
(i)
Z σ̂

( j)
Z cosφi j

s

3N∑
m=1

�im Z� jm Z

δm

 for t � sup
m

|δ−1
m |. (25)

In the ‘stiff’ lattice limit (see section 3.1), we choose the drive frequency ωI close to one of the
bare frequencies, say ω̄3, such that the detunings δm will be much smaller for normal modes
in this set than for the other normal modes; consequently, the sum over modes m in (25) can
be restricted to an ‘active’ set of N modes clustered around ω̄3. If we further choose the drive
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frequency such that δ̄3 = ω̄3 −ωI is much larger than the spread of the normal mode frequencies
in the active group, the series expansion

1

δm
=

1

δ̄3
−
ω2

m − ω̄2
3

2ω̄3δ̄
2
3

+O[(ω2
m − ω̄2

3)
2] (26)

together with the relations in the ‘active’ group of normal modes
N∑

m=1

Oi3m O j3m = δi j , (27a)

N∑
m=1

Oi3m O j3m(ω
2
m − ω̄2

3)= γ 33
i j (27b)

simplifies the unitary evolution (25) to

ÛI(t)≈ exp

[
iq̄2

03t

4h̄2δ̄3

N∑
i=1

(m3
i · s(i)Z )

2

]

× exp

[
−

iq̄2
03t

8h̄2ω̄3δ̄
2
3

N∑
i, j=1

γ 33
i j cosφi j

s (m
3
i · s(i)Z )(m

3
j · s( j)

Z )σ̂
(i)
Z σ̂

( j)
Z

]
, (28)

where we have further approximated q0 m ≈ q̄03 =
√

h̄/(2Mω̄3). The first term in (28) is a global
phase; it is the second term that mediates an effective spin–spin coupling on the lattice of ions.
It can be interpreted as the evolution under an effective spin–spin coupling Hamiltonian due to
the driving of local mode µ= 3,

Heff
33 =

N∑
i, j=1

J 33
i j σ̂

(i)
Z σ̂

( j)
Z , (29)

where the effective spin–spin coupling coefficients are

J 33
i j =

q̄2
03γ

33
i j cosφi j

s (m
3
i · s(i)Z )(m

3
j · s( j)

Z )

8h̄ω̄3δ̄
2
3

. (30)

We conclude that to lowest order the strength of the spin–spin coupling between two ions is
determined by the geometric overlaps (m3

i · s(i)Z ) and (m3
j · s( j)

Z ) of the ‘active’ local modes of
vibration with the direction of the state-dependent force, as well as by the real-space Coulomb
coupling strength γ 33

i j between the ions moving along these local modes (see (13) and (17)).
The relative phases φi j

s of the driving forces can be used to modulate the coupling strengths.
These observations are used in section 4 to construct a quantum simulator on a lattice of trapped
ions. Equations (29) and (30) faithfully describe the evolution of the system under the following
conditions:

• The vibrational band structure of the trapped ions must consist of clearly distinct bands
which can be addressed individually (see section 3.1 for the conditions for ‘stiff’ trapping).

• The state-dependent force must be driven at a small detuning δ from one of these bands: δ
must be large enough such that (26) is valid for this band, but small enough such that the
contributions to (30) from other bands are negligible.

New Journal of Physics 13 (2011) 115011 (http://www.njp.org/)



13

• The amplitude of the state-dependent force must be small enough such that it does not
significantly excite ion vibrations. The condition |�im`| � |δm| given above implies that the
state-dependent forces must be weaker than the force scale F̂ ∼ h̄|δ|/q0 for the addressed
band.

The above arguments can be made in a very similar fashion for σ̂ (i)X σ̂
( j)
X and σ̂ (i)Y σ̂

( j)
Y

interactions by considering the interaction Hamiltonian (21) with ωI ≈ ω↑↓ ± ω̄µ in the
appropriate basis |±〉 = (|↑〉 ± eiχ

|↓〉)/
√

2, where the considered spin–spin interaction is
diagonal. The only slight complication can arise from carrier terms proportional to c(i)X and c(i)Y
that are detuned by roughly the motional eigenfrequencies. For detunings from the sidebands on
the order of the dipole–dipole interactions and correspondingly small drive strengths, however,
these carrier terms can be safely neglected.

To summarize this section, we have considered general effective spin–spin interactions in
the limit of ‘stiff’ ion trapping. We have shown that even in a lattice, the spin–spin coupling
strength of any two ions depends on the dipolar Coulomb coupling between these two ions. To
avoid appreciable entanglement between (pseudo)spins and ion motion, the detunings of driving
fields need to be larger than the couplings they induce. This latter finding agrees with other work
on simulation with trapped ions [8]. At the same time, the detunings cannot be much larger than
the couplings between nearest neighbors, which determine the finer structure of the normal-
mode spectrum around the frequencies of the uncoupled (‘bare’) motion of an ion tightly bound
in one of the trapping wells (see section 4 for a concrete example). These requirements impose
stringent bounds on the time scales necessary to perform simulations. For example, in [23]
two ions at a distance of 40µm exhibited an exchange splitting of approximately 3 kHz, barely
sufficient to demonstrate a few energy exchanges before ion heating profoundly altered the
motion. Simulations that need to progress adiabatically with respect to this exchange period will
therefore be experimentally challenging and may require reducing anomalous heating below
what was measured in [23].

4. The Kitaev model

As an example of how to use the results of sections 2 and 3 in the design of a quantum simulator,
we construct an implementation of the hexagonal Kitaev model [25] with microtrapped ions. In
its ideal form, this exactly solvable 2D spin model has a topologically ordered ground state with
anyonic excitations, which makes it extraordinarily interesting for study in a quantum simulator
with individual access to the constituent degrees of freedom.

4.1. Model and implementation

The hexagonal Kitaev model [25] has the Hamiltonian

HKitaev = −JX

∑
X−links

σ̂
(i)
X σ̂

( j)
X − JY

∑
Y−links

σ̂
(i)
Y σ̂

( j)
Y − JZ

∑
Z−links

σ̂
(i)
Z σ̂

( j)
Z (31)

defined on a honeycomb lattice of spin-1/2 particles, where the laboratory-frame bond vectors
refer to figure 3:

1X = d{0, 1, 0}, 1Y = d{
√

3,−1, 0}/2, 1Z = d{−
√

3,−1, 0}/2. (32)
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Figure 3. Dipole–dipole interactions (15) with the central (green) site due to the
vibrational directions of (33) for the case of µ= X , expressed as percentages
of the dominant coupling (equal to 1.99 × Q2/(4πε0d3), see (34); values below
1% of this are not shown). Figures 4 and 5 show the vibrational band structure
induced by these couplings. The couplings for Y (Z ) are found by rotating this
figure by 120

◦

(240
◦

) clockwise. Red and blue wires are described in section 4.4.

In this way the Hamiltonian (31) associates each real-space bond direction (32) with a spin
quantization direction; however, it is important to keep in mind that the bond directions and
the associated spin quantization directions are not a priori related (see appendix). The ions are
located on two sublattices L◦ and L•, as shown in figure 3. Neighboring ions are a distance d
apart.

The form of (31) is exactly that of (29) summed over three concurrent driving force fields.
As these driving fields will be at very different frequencies, they can be applied simultaneously
in order to drive the full Hamiltonian (31). What is therefore needed in order to implement the
Kitaev model is a set of ‘bare’ vibrational directions of the ions such that the couplings γ µνi j ,
and therefore the effective spin–spin couplings (30), match the particular geometry of the three
terms in (31).

We choose the ion trapping height to be half of the inter-ion distance, h = d/2, and the
orthonormal principal axes of vibration for ions on the two sublattices as

mX
◦

= {0, 2,
√

2}/
√

6, mX
•

= {0,−2,
√

2}/
√

6,

mY
◦

= {
√

3,−1,
√

2}/
√

6, mY
•

= {−
√

3, 1,
√

2}/
√

6, (33)

mZ
◦

= {−
√

3,−1,
√

2}/
√

6, mZ
•

= {
√

3, 1,
√

2}/
√

6.

This particular choice of axes of vibration has the property that dipole–dipole couplings of
the sort of γ µµi j (i.e. coupling the mµ

i vibration of the ion at R0i with the mµ

j vibration of the
ion at R0 j ) are strongly dominated by the nearest-neighbor couplings required by the Kitaev
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Figure 4. Vibrational band structure due to the dipole–dipole interactions
of vibrations along one of the sets of axes in (33) (µ= X , see figure 3),
corresponding to the density of states shown in figure 5. In the lower band (left)
neighboring ions move out of phase; in the upper band (right) they move in
phase. The first Brillouin zone is drawn in black. Frequencies (colors) are given
in units of ω0 (see figure 5).

model (31), shown in figure 3 for µ= X . These couplings can be calculated from (15) (in the
absence of a cover plane); the resulting nearest-neighbor terms in the dipole–dipole coupling
part of the Coulomb potential (17) are

Vnn =

∑
µ,ν∈{X,Y,Z}

Q2

4πε0d3

[
52 − 3

√
2

24
δµ,ν +

3
√

2 − 4

48
(1 − δµ,ν)

] ∑
i∈L◦

rµi rµi+1ν
. (34)

In addition, there are dipole–dipole couplings to neighbors that are further away and that turn
out to be larger than the off-diagonal terms (µ 6= ν) in (34). The vibrational normal-mode band
structure due to all of these dipole–dipole couplings is shown in figure 4, with the effective
density of states shown in figure 5. It consists of two bands, in which neighboring ions oscillate
in-phase (upper band) and out-of-phase (lower band), and whose small frequency spread is
indicative of the dominance of the nearest-neighbor coupling over all other couplings.

Many dipole–dipole couplings of the sort of rµi r νj with µ 6= ν are nonzero in this
configuration; however, they do not lead to effective spin–spin couplings if the underlying trap
frequencies along the directions mµ

i and mν
j are strongly off-resonant (see sections 3.3 and 4.2).

Thus, neglecting any µ 6= ν couplings, the effective spin–spin Hamiltonian that is constructed
from µ= X Coulomb interactions is approximately

−HX/JX =

∑
i∈L◦

σ̂
(i)
X

[
σ̂
(i+1X )

X + 0.05
(
σ̂
(i−21Y )

X + σ̂ (i−21Z )

X

)
+ · · ·

]
+

1

2

∑
i∈L◦∪L•

σ̂
(i)
X

[
0.06

(
σ̂
(i+1Y −1Z )

X + σ̂ (i+1Z −1Y )

X

)
+ · · ·

]
, (35)
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Figure 5. Density of states of the vibrational bands (figure 4) due to the
dipole–dipole interactions of vibrations along the sets of axes in (33), shown
in figure 3. Left: the six bands consisting of three off-resonant doublets (µ=

X, Y, Z ) with central frequencies (bare trap eigenfrequencies) split by the golden
ratio (see section 4.2); ω̄ = (ω̄X ω̄Y ω̄Z)

1/3 and ω0Y/ω̄ = 0.02 (much larger than
in a realistic experiment). Right: zoom of one of the doublets. The two bands
detailed in figure 4 are clearly visible, separated by ≈ 4ω0, and show the extent
to which the couplings of figure 3 are dominated by the desired nearest-neighbor
couplings. The scale of the bands is ω0µ = Q2/(8πε0ω̄µMd3).

where the first sum contains couplings between the different lattices while the second sum
contains couplings within the lattices; numerical prefactors for the perturbing terms are
used for brevity, as in figure 3. Here, we have assumed for simplicity that all ions are
simultaneously pushed by the same state-dependent force with equal phase. The Hamiltonians
HY and HZ are found from (36) through rotations by ±120

◦

, and the total effective spin
Hamiltonian is

H′
= −JXHX − JYHY − JZHZ , (36)

where JX , JY and JZ are effective coupling constants containing the diagonal coupling strength,
the physical prefactors, as well as the mechanisms used for achieving these effective spin–spin
couplings (see section 4.4). The topic of whether or not this slightly perturbed Hamiltonian (36)
exhibits the same interesting topological phases as the ideal Hamiltonian (31), at zero or
finite [41, 42] temperature, is beyond the scope of this paper. We mention, however, that if
the perturbative terms of (36) will be deemed too strong, they can be reduced further by driving
the different wires with different relative phases or amplitudes (see (30)).

The presented configuration of trapping height and vibrational axes nearly maximizes
the desired dipole–dipole couplings at the same time as it nearly mimimizes all undesired
couplings. By numerical optimization we can identify a configuration that performs a few
per cent better than (33), but we have not been able to obtain an analytical description of this
configuration.

4.2. SE trap design

To have maximally incommensurate vibrational frequencies along the normal-mode axes (33),
we choose them in the golden ratio ωX : ωY : ωZ = φ−1 : 1 : φ with φ = (1 +

√
5)/2. We use the
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Figure 6. Left: optimized rf (blue) and dc (white) electrodes for the constraints
of section 4.2, with no spurious traps. Dimensionless trap curvatures are κ =

0.080. Right: optimized electrodes for a honeycomb lattice with out-of-plane
quadrupole confinement, trapping height h = d/2 and cover plane at H = 50d.
Dimensionless trap curvatures are κ = 0.102. Coordinates are as in figure 3.

algorithm of [36] to find an rf SE pattern that will generate an infinite honeycomb lattice of
exactly such microtraps, with the following constraints:

• The unit cell of the electrode pattern is defined by the vectors a = d{
√

3, 0, 0} and
b = d{

√
3/2, 3/2, 0}.

• The ion positions within the unit cell define the sublattices L◦ and L•: R0◦ = d{0, 0, 1/2}

and R0• = d{
√

3, 1, 1/2}.

• The gradient of the rf electric potential generated by the SEs must vanish at the ion
positions in order to have minima of the rf pseudo-potential.

• The principal axes of the second derivative tensors of the rf electric potential at the ion
positions are aligned with the directions given in (33), with eigenvalues proportional to
{φ−1, 1,−φ} in the mX

◦,•, mY
◦,• and mZ

◦,• directions, respectively.

• A cover plane is located at a height H = 50d.

The resulting electrode pattern is shown in the left panel of figure 6. It generates microtraps at
the desired positions with dimensionless curvatures [36] κ = 0.080 and no spurious additional
microtraps. This is to be compared with a simple out-of-plane quadrupole honeycomb lattice
geometry (κ = 0.102) as in [36] (see figure 6, right panel), which can potentially be deformed
during the experiment via dc electrode potentials into satisfying the above constraints. Such dc
electrodes might be necessary in any experimental implementation in order to null micromotion
of the ions [43] induced by manufacturing inaccuracies and stray charges.

4.3. Trap depth and trap loading

The depth of the microtrap lattices generated by the electrodes shown in figure 6 is rather
shallow. For the honeycomb lattice, which is more easily analyzed due to its p6m symmetry,
figure 7 (solid line) shows the ponderomotive pseudo-potential along a vertical axis through
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Figure 7. Total potential on a vertical axis through any microtrap formed by
the electrode of figure 6 (right panel). The ponderomotive pseudo-potential is
drawn with a solid line, in units of Epp = Q2U 2

rf/(4M�2
rfd

2). Two levels of dc
biasing (either through the rf electrode or applying the same bias potential to
the dc electrodes and the cover plane; vertically offset to leave the trapping
minimum unchanged) are shown, in units of Vpp = Epp/Q. For a bias voltage
V & 0.125Vpp the hexagonal lattice microtraps are the only attractors (trapping
zones) for cooled ions.

any microtrap, in units of Epp = Q2U 2
rf/(4M�2

rfd
2). For 9Be+ ions (Q = +e, M = 9 u) trapped

with Urf = 50 V and �rf = 2π × 200 MHz in a lattice of d = 30µm (h = d/2 = 15µm and
H = 50d = 1.5 mm), we have Epp = 4.7 eV = 5.5 × 104kB K and thus a trap depth (ion-loss
barrier) of 0.001 85Epp = 8.7 meV = 101kB K. This small adiabatic trap depth is likely further
reduced by the breakdown of the pseudo-potential approximation near the trap barrier. In order
to reliably load these microtraps, we can make use of the cover plane (see section 2.1): applying
a positive dc bias potential to the dc electrodes and the same potential to the cover plane adds
an electrostatic potential that pushes the ions towards the rf electrode and increases the trapping
well depth (see figure 7). Since this dc potential is equivalent to applying a negative dc bias
potential to the rf electrode, its dc electric field at the ion trap sites vanishes (by construction of
the rf electrode shape) and it thus does not induce micromotion [43]. We find that applying a
small dc bias potential of at least 0.125Epp/Q ≈ 0.6 V is sufficient to make the desired lattice
of microtraps the only minima of the total potential (dashed line in figure 7). By applying a
stronger bias voltage, the resulting total potential (dotted line in figure 7) is deep enough to trap
ions produced by photoionization directly from a hot atomic beam. This bias will simultaneously
cause the traps to be shallower in the xy-plane.

4.4. Wires for magnetic interaction

As described in section 3, effective spin–spin interactions between ions require internal-state-
dependent forces to be applied to the ions. In the present model, we propose to embed parallel
wires below the electrode plane, which generate local magnetic field gradients at the positions
of the ions (see (20)). A relatively simple periodic grid of two different types of wires, indicated
in red and blue in figure 3, suffices to implement the spin–spin interactions along all three
bond types of the Kitaev model. As explained in section 3, one can induce pairwise σ̂ (◦)X σ̂

(•)

X
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and σ̂ (◦)Y σ̂
(•)

Y interactions by currents at frequencies that are near-resonant to ω↑↓ ±ωX and
ω↑↓ ±ωY (Mølmer–Sørensen-type interactions [2]); the σ̂ (◦)Z σ̂

(•)

Z interactions can be driven with
currents that are near-resonant to ωZ (phase-gate-type interactions [5]). Because the three band-
manifolds are well separated in frequency (figure 5), the dynamics of the three bond types can
be driven simultaneously by currents at separate frequencies that are mutually off-resonant.

The geometry of the wires is determined by the condition that we need to suppress
the magnetic field at the position of all ions, in order to have negligible carrier interactions
c(i)` in (20), while maintaining useful field gradients that couple to their target vibrational
directions (33) to drive spin–spin interactions on all three bonds simultaneously [21, 22]. The
magnetic field of two infinite sets of infinitely long wires parallel to the y-axis as in figure 3,
with distance dw = d

√
3/2 between wires of equal color, is

Bw(x, z)=
µ0 Iblue

d
√

3
×

x̂ sinh 4π z
d
√

3
− ẑ sin 4πx

d
√

3

cos 4πx
d
√

3
− cosh 4π z

d
√

3

−
µ0 Ired

d
√

3
×

x̂ sinh 4π z
d
√

3
+ ẑ sin 4πx

d
√

3

cos 4πx
d
√

3
+ cosh 4π z

d
√

3

, (37)

where µ0 is the magnetic constant. The field over the blue wires (i.e. at the ion positions)
vanishes at height hw if the ratio of currents is

Iblue

Ired
= − tanh2 2πhw

d
√

3
. (38)

With this current ratio the magnetic-field gradient at the ion positions is

∇Bw(x = ndw, z = hw)=
4πµ0 Iblue

3d2
sinh−2 2πhw

d
√

3

0 0 1
0 0 0
1 0 0

 (39)

for any n ∈ Z. As this magnetic-field gradient decreases rapidly with increasing distance hw to
the ions, one should place the wires as close as possible to the ions. On the other hand, they
should not interfere with the trap electrodes. As a reasonable compromise for the following
estimates, we can assume that the wires are below the electrodes such that hw = dw = h

√
3. The

actual hw in an experiment will probably be dictated by constraints in the microfabrication.
We choose the quantization axis of the pseudo-spins of the ions to coincide with its

associated bond direction, Ẑ = 1Z/d; however, any other choice of Ẑ will be equally valid, and
the experimenter’s choice may depend on the available quantization fields. For our choice, sZ =
√

3
2 ẑ × gµB

4πµ0 I
(ω̄Z )
blue

3d2 sinh−2 2πhw

d
√

3
for all ions on both sublattices, and with γ Z Z

◦•
=

Q2

4πε0 Md3
52−3

√
2

24
(the diagonal term of (34)) the interaction strength (30) becomes

JZ =
γ Z Z

◦•
(mZ

◦
· sZ)(mZ

•
· sZ)

16Mω̄2
Z δ̄

2
Z

=
π2(52 − 3

√
2)

432

[q̄0Z gµBµ0 Q I (ω̄Z )

blue ]2

4πε0 Mh̄ω̄Z δ̄
2
Z d7

sinh−4 2πhw

d
√

3
, (40)

where g is the effective g-factor such that the energy difference between the |↑〉 and |↓〉

pseudo-spin states in a weak constant magnetic field along the quantization axis is 1E↑↓ =

h̄ω↑↓ − gµB BZ . I (ω̄Z )

blue is the current amplitude in the blue wires at frequency ω̄Z + δ̄Z with
|δ̄Z | � ω̄Z . With d = 30µm, g = 1, M = 9 u, Q = +e and ω̄Z = 2π × 5 MHz, this coupling
strength is JZ = 7.6 kHz × [I (ω̄Z )

blue /A]2[δ̄Z/(2π kHz)]−2. To avoid sizable entanglement of the
(pseudo)spins with the ion motion, we need to fulfill∣∣∣∣ JZ

h̄δ̄Z

∣∣∣∣ ≈ 7.6 ×
[I (ω̄Z )

blue /A]2

[δ̄Z/(2π kHz)]3
< 1. (41)
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The hexagonal Kitaev model features interesting gapped phases with anyonic excitations of
the ground state for example if |Jx | = |Jy|< |Jz|/2, in which case the coupling constant of the
resulting effective Hamiltonian is Jeff = J 2

x J 2
y /(16|Jz|

3) < |Jz|/256 (see [25] for discussions of
these phases and their emergence from (31)).

While the geometric prefactor of (40) depends on the details of the model, its functional
dependences are expected to remain the same for a broad class of wire-driven coupled pseudo-
spin models, in particular also for JX and JY of the same system. The exact form of the
interactions along the X and Y bonds depends on the transition dipole matrix elements µd =

〈↑|µ̂|↓〉 which can have components along all spatial directions.6 The component along the
quantization axis Ẑ is relevant for π transitions (where the Ẑ component of the total angular
momentum F of the ion does not change, 1m F = 0), while perpendicular components can be
used for σ± transitions (during which the Ẑ component of F changes by 1mF = ±1). The
coupling strengths for π transitions are found by scaling (40) to be

JX/Y = JZ

∣∣∣∣∣ q̄0X/Y (µd · Ẑ)
q̄0Z gµB

∣∣∣∣∣
2

I
(ω↑↓+ω̄X/Y )

blue I
(ω↑↓−ω̄X/Y )

blue

[I (ωZ )

blue ]2
, (42)

with currents of amplitude I
(ω↑↓±ω̄X/Y )

blue at frequencies ω↑↓ ± (ω̄X/Y + δ̄X/Y ) that are required
to drive Mølmer–Sørensen-type interactions [2]. For σ±-transitions analogous relations hold
involving the projections of µd along (X̂ ± iŶ)/

√
2. We conclude that all interactions are similar

in magnitude and that the current amplitudes can be used to tune the effective coupling strengths
JX , JY and JZ of the Kitaev model simulator (36). To drive all bonds simultaneously, a total
of five alternating currents at different frequencies are necessary; using the largest allowed
value of 1 in (41), the maximum rms current each of the blue wires (and red wires, see (38))

has to sustain is
√

〈I 2
blue(t)〉 ≈

√
5/2 × 0.36 A × [δ̄/(2π kHz)]3/2. We recall, however, that (40)

and (42) depend very strongly on the vertical distance hw, and even a small reduction in hw can
substantially reduce the required currents.

Expression (40) seems to suggest that for quantum simulators built with the principles
described here, decreasing the physical size of the ion-trap lattice (as given by the length scale
d) will strongly increase the simulation speed, which is given by the effective dynamics of the
particular quantum simulator but ultimately proportional to the spin–spin coupling strengths.
However, a careful analysis of assumptions and constraints, carried out below for interactions
along Z but equally valid for all other effective interactions, disproves this observation. Firstly,
if we assume that avoiding ion motion is a significant experimental constraint, a constant ratio
JZ/(h̄δ̄Z) in (41) implies that the effective spin–spin coupling strength scales as

JZ ∝
[I (ω̄Z )

blue ]2/3

ω̄
2/3
Z d7/3

(43)

for a given ion species and given electrode shapes. Secondly, assuming the currents to be limited
by heat dissipation, an upper bound on I (ω̄Z )

blue must scale as d3/2. And lastly, lower bounds for
the trap frequency can be found in two ways: (i) to meet our assumption of stiff trapping,
i.e. ω0Z � ω̄Z , we require ω̄Z � d−3/2

× |Q|/
√

8πε0 M ; and (ii) to use the expansion (26), we

6 In the case of a real spin, µd =
1
2 gµB(X̂ − iŶ) (see the example in section 3.2); but what follows also applies to

more general pseudo-spin cases where we can have µd · Ẑ 6= 0, for example if the pseudo-spin states are hyperfine
states of an ion.
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require ω0Z � |δ̄Z |, which, combined with the scaling of (43) for δ̄Z and with the above current
scaling, implies a scaling of d−5 for the lower bound of ω̄Z . Together, these bounds imply that
the maximal achievable coupling strength (43) scales only as d−1/3 or even d2, depending on
which of the frequency bounds is more stringent. Since current experimental setups are far from
reaching these lower bounds on ω̄Z , miniaturization is expected for now to increase the coupling
strength faster than these estimates, but the optimal dimension, where the ratio of simulation
speed and heating rate (anomalous heating, scaling as d−4 [44, 45]) is maximized, remains an
open question.

5. Conclusions

We have discussed modifications to Coulomb potentials and interactions of trapped ions due
to the presence of trap electrodes and cover planes. For plane geometries, we have treated
these modifications rigorously, using the method of image charges. We have found considerable
deviations of the long-range behavior from that in free space when the relevant distances are of
the order of ion-to-surface distances or larger. Moreover, we have developed a general approach
to treating the effective spin–spin interactions of ions trapped in a multi-trap array in the
stiff-trapping limit, where dipole–dipole interactions between nearest neighbors produce only
small corrections to the bare normal modes of a given trap well. We have shown that effective
coupling strengths, and therefore simulation time scales, are determined by the nearest-neighbor
dipole–dipole couplings. As an illustration of the versatility and power of this stiff-trap-array
approach, we have discussed a quantum simulation of the hexagonal Kitaev model. We have
also addressed several practical challenges, including how the trap depth of the array may be
improved, so ions created from a thermal source with large kinetic energies can be trapped.
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Appendix. Summary of the used coordinate systems

In order to help distinguishing the various coordinate systems used in the text, we summarize
them here.

• The laboratory frame is spanned by the unit vectors

x̂ = {1, 0, 0}, ŷ = {0, 1, 0}, ẑ = {0, 0, 1}. (A.1)

Its orientation is shown in figures 1–3. In section 2, laboratory-frame vectors are written as
r = x x̂ + y ŷ + z ẑ with ρ =

√
x2 + y2 and r =

√
x2 + y2 + z2.

• The pseudo-spin quantization frame is given by the orthonormal unit vectors X̂ , Ŷ and Ẑ,
where Ẑ is the quantization axis. In section 4.4, we set Ẑ = 1Z/d .
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• The i th ion’s vibration around its equilibrium position is expressed in the local coordinate
frame mµ

i ; see (12). For the Kitaev model, we use the vectors given in (33): each vibrational
direction (depending on which sublattice the ion is located) is indexed by, and associated
with, one of the spin-space directions X̂ , Ŷ , Ẑ, but this does not mean that the vibrational
directions are parallel (or in any way related) to the spin-space axes.

• The vectors connecting neighboring ions in the Kitaev honeycomb lattice 1X , 1Y and 1Z

are of length d and given in (32). They all lie in the plane of the lattice and do not form a
3D coordinate system.
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